Clonal sequencing technologies: considerations for diagnostic service delivery

Chris Mattocks
National Genetics Reference Laboratory (Wessex)

Applications

- Mutation scanning
- Copy number analysis by counting single reads (array comparative hybridisation equivalent)
- Genome architecture using paired end reads (including balanced variations)
- Non-invasive prenatal diagnosis
- Methylation/epigenetic analysis
- Mitochondrial DNA analysis
- Deep sequencing / tumour profiling
- Expression analysis
- cDNA (RNA) sequencing

Genome analysis

Strategies

Whole genome

 Sequence the whole genome regardless of presentation and extract required info.

Fixed targeting

 Define limited set of test types with specific pre-defined targeting regime e.g. cardiac, hearing loss, X-linked MR etc

Flexible targeting

Targeting dependant on referral

Potential diagnostic approaches

Strategy	Technologies	For	Against
Whole genome	PacBio Complete genomics Oxford Nanopore ??	SimplicityCost?Turnaround?Pre-emptive	Current feasabilityColateral findingsData analysisCost?
Fixed targeting	Nimblegen Febit Agilent SureSelect	SimplicityAvailabilityPre-emptive?	FlexibilityCollateral findingsData analysis
Flexible targeting	PCR/LR-PCR Gene Collector Gene Selector Long Padlock probes Patch PCR	FlexibilityPatient basedEfficiency	•Development •Sample processing

Targeting

- Targeting is economic if:
 - targeting \$ ≤whole genome \$ (simplistically)
 - Nr targeted analyses ≡ whole genome > ~10
- Targeting efficiency = selectivity x uniformity
 - Selectivity = proportion of sequencing is on target
 - Uniformity = min representation / ave. representation
- Targeting sensitivity
 - For diagnostics it is critical all regions are suitably covered

Uniformity

Fragment	Relative rep.	Sequence required	Actual sequence
Α	1	500	500
В	80	500	40000
С	28	500	14000
D	18	500	9000
sequence for 50x coverage		100000	3175000

Uniformity = 1/ave.[1,80,28,18] = 0.031 Actual sequence (i.e. capacity usage) = sequence required / uniformity

Uniformity is measured at level of sequencing - About 5x difference in (representation is seen without targeting and is due to sequencing itself.

Typical values for current technologies range from 0.05 - 0.005Direct sequencing U $^{\sim}0.25$

Capacity

Usable capacity

- Platform
- Application
- Read length
- Required read depth
- Loss of capacity due to partitioning?
- Targeting efficiency

Required capacity (Mutation scanning)

- Colorectal cancer 10 genes ~45kb
- Hypertrophic cardiomyopathy 22 genes ~200kb

Analysis

- Base calling
- Alignment
- Application specific analysis
- Interpretation
- Data archiving
- •Infrastructure

Process models

Sample collection > DNA/RNA extraction > test > analyse > interpret > report > follow-up

- Local Self contained
- Hub and spoke
- Centralised
- Process control
 - Audit trail / sample tracking
 - Sample exchange

Other issues

- Political
- Ethical
- Financing
- Accreditation
- Implementation (ACCE)
 Analytical / technical Validation
 Clinical validation
 Clinical utility
 - Ethical, legal and social considerations

Summary / conclusions

- Targeting is likely to be useful for diagnostics even with availability of 3rd gen sequencing
- Ideal targeting methodology would be:
 - √ Cheap
 - √ Simple
 - √ Flexible (in capacity and content)
 - ✓ 100% sensitivity, specificity & uniformity
 - ✓ Quantitative
- •There are many other considerations for diagnostic implementation of NGS
- Overhaul of service delivery and IT infrastructure

Complex interaction of many factors

